SAN FRANCISCO (GenomeWeb) – Researchers are turning to next-generation sequencing to develop better methods for cataloguing mutations that confer tuberculosis drug resistance and, ultimately, to design better diagnostics.

According to the World Health Organization, 80 percent of people infected with multi-drug resistant tuberculosis in 2015 did not receive the appropriate treatment, and only half of those who started treatment were cured. This is compared to a more than 90 percent cure rate for tuberculosis that is not resistant.

Get the full story with
360Dx Premium

Only $95 for the
first 90 days*

360Dx Premium gives you:
✔ Full site access
✔ Interest-based email alerts
✔ Access to archives

Never miss another important industry story.

Try 360Dx Premium now.

You may already have institutional access!

Check if I qualify.

Already a 360Dx or GenomeWeb Premium member?
Login Now.

*Before your trial expires, we’ll put together a custom quote with your long-term premium options.

Not ready for premium?

Register for Free Content
You can still register for access to our free content.
Jan
30
Sponsored by
Loop Genomics

This webinar will provide a comparison of several next-generation sequencing (NGS) approaches — including short-read 16S, whole-genome sequencing (WGS), and synthetic long-read sequencing technology — for use in microbiome research studies.

Jan
30
Sponsored by
Loop Genomics

This webinar will provide a comparison of several next-generation sequencing (NGS) approaches — including short-read 16S, whole-genome sequencing (WGS), and synthetic long-read sequencing technology — for use in microbiome research studies.